
purdy
Release 1.10.2

Christopher Trudeau

Nov 02, 2022

CONTENTS

1 Purdy Programs 3

2 Purdy TUI Controls 5

3 Purdy Library 7

4 Installation 9

5 Supports 11

6 Docs & Source 13
6.1 Contents . 13
6.2 Indices and tables . 37

Python Module Index 39

Index 41

i

ii

purdy, Release 1.10.2

During talks or screencasts I don’t want to be typing code, it is too error prone and too likely to mess up my speaking
flow. Purdy is both a set of programs and a library to display colourized code in a series of animations.

The purdy command takes one of a Python program, a Python REPL console file or a Bash console file. Source code
is presented to the screen as if typing. For console files, the typing pauses at a prompt, waiting for interaction. Prompts
are:

• >>> or ... for Python REPL

• $ for Bash console

If the program is paused at a prompt, pressing the right arrow will continue. Typing animation can be skipped over by
pressing the letter “s” instead. Animation can be undone by pressing the left arrow. More info on keys can be found in
the help dialog, viewed by pressing “?”.

Example Usage:

$ purdy code-snippet.py

The result looks like this:

Once the code has been displayed, further key presses are ignored. At any time you can press “q” to quit.

CONTENTS 1

purdy, Release 1.10.2

2 CONTENTS

CHAPTER

ONE

PURDY PROGRAMS

The following programs come with the purdy library:

• purdy – Animated display that looks like a program is being typed to the screen.

• pat – “purdy cat”, prints ANSI colourized source.

• prat – “purdy RTF cat”, prints colourized source in RTF document format. Particularly useful for copying to a
clipboard and pasting full colourized source into a document. On OS X prat <filename> | pbcopy will put the
output directly to the clipboard.

• subpurdy – Full set of commands to control Purdy. Sub-commands dictate behaviour. Does a variety of code
presentation. Includes ANSI, RTF, HTML output as well as the typewriter animations.

More information can be found in the Command Line Program Documentation.

3

purdy, Release 1.10.2

4 Chapter 1. Purdy Programs

CHAPTER

TWO

PURDY TUI CONTROLS

The following keys help you to control the TUI purdy programs:

• ? – Help screen

• <RIGHT> – next animation step

• <LEFT> – previous animation step

• s – go to the next step, skipping any animation

For custom made code using the purdy library, the following controls will also work:

• S – go to the next section, skipping any animation.

• <TAB> – focus next window area in a multi Screen display

• <SHIFT><TAB> – focus previous window area in a multi Screen display

Additionally the s, S, and <LEFT> commands all support skipping multiple steps by specifying a number first. For
example the sequence 12s would skip past the next 12 steps.

5

purdy, Release 1.10.2

6 Chapter 2. Purdy TUI Controls

CHAPTER

THREE

PURDY LIBRARY

The purdy script is fairly simple. You can create more complex animations by writing programs using the purdy
library. Custom programs can have split screens, highlighting lines, slide transitions and more. More information can
be found in the Library Documentation.

7

purdy, Release 1.10.2

8 Chapter 3. Purdy Library

CHAPTER

FOUR

INSTALLATION

$ pip install purdy

9

purdy, Release 1.10.2

10 Chapter 4. Installation

CHAPTER

FIVE

SUPPORTS

Purdy has been tested with Python 3.7 through 3.11. Terminal control is done with the Urwid library. Parsing and
tokenization is done through Pygments. Both libraries are execellent and I’m grateful they’re publically available.

11

http://urwid.org/
https://pygments.org/

purdy, Release 1.10.2

12 Chapter 5. Supports

CHAPTER

SIX

DOCS & SOURCE

Docs: http://purdy.readthedocs.io/en/latest/

Source: https://github.com/cltrudeau/purdy

Version: 1.10.2

6.1 Contents

6.1.1 Command Line Program Documentation

purdy Command

Displays a highlighted version of python text to the screen as if it is being typed

usage: purdy [-h] [--version] [-l {con,py3,bash,dbash,node}]
[--maxheight MAXHEIGHT] [-c] [-x16] [-d DELAY | -w WPM]
[--variance VARIANCE]
filename

Positional Arguments

filename Name of file to parse

Named Arguments

--version show program’s version number and exit

-l, --lexer Possible choices: con, py3, bash, dbash, node

Name of lexer to use to parse the file. Choices are: “con” (Python 3 Console),
“py3” (Python 3 Source), “bash” (Bash Console), “dbash” (Bash Console with
a dollar-sign prompt), “node” (JavaScript Node.js Console). If no choice given,
attempts to determine the result automatically. If it cannot detect it, it assumes
Python 3.

Default: “detect”

13

http://purdy.readthedocs.io/en/latest/
https://github.com/cltrudeau/purdy

purdy, Release 1.10.2

--maxheight Sets a maximum screen height for the TUI screen viewer. Ignored if not in TUI
mode.

Default: 0

-c, --continuous Instead of prentending to type like a human, just dump the file to the screen

Default: False

-x16 Force 16 colour terminal mode in case 256 is not working to the screen

Default: False

-d, --delay Amount of time between each letter when in typewriter mode. Specified in mil-
liseconds. Defaults to 130ms

-w, --wpm Number of words per minute that the typing speed should look like

--variance To make the typing look more real there is a variance in the delay between
keystrokes. This value, in milliseconds is how much to go over or under the delay
by. Defaults to +/- 30ms

pat Command

This command prints ANSI colourized versions of a file, parsing the file based on a limited number of pygments lexers.
‘pat’ is part of the ‘purdy’ library. A list of supported lexers is available in the help. If no lexer is specified the library
attempts to determine which lexer to use automatically.

usage: pat [-h] [-l {con,py3,bash,dbash,node}] [--version] [--num NUM]
[--highlight HIGHLIGHT]
filename

Positional Arguments

filename Name of file to parse

Named Arguments

-l, --lexer Possible choices: con, py3, bash, dbash, node

Name of lexer to use to parse the file. Choices are: “con” (Python 3 Console),
“py3” (Python 3 Source), “bash” (Bash Console), “dbash” (Bash Console with
a dollar-sign prompt), “node” (JavaScript Node.js Console). If no choice given,
attempts to determine the result automatically. If it cannot detect it, it assumes
Python 3.

Default: “detect”

--version show program’s version number and exit

--num Display line numbers with code starting with the value given here

Default: -1

--highlight, --hl Highlight certain line numbers when displaying the code. Line numbers are 1-
indexed. Multiple lines can be higlighted using a hyphen for range (e.g. 1-4,
inclusive) or a comma separated list (e.g. 1-4,7,9 is line 1, 2, 3, 4, 7 and 9).

14 Chapter 6. Docs & Source

purdy, Release 1.10.2

prat Command

This command prints colourized RTF version of a file, parsing the file based on a limited number of pygments lexers.
‘prat’ is part of the ‘purdy’ library. A list of supported lexers is available in the help. If no lexer is specified the library
attempts to determine which lexer to user automatically.

usage: prat [-h] [-l {con,py3,bash,dbash,node}] [--version] [--num NUM]
[--background BACKGROUND] [--highlight HIGHLIGHT]
filename

Positional Arguments

filename Name of file to parse

Named Arguments

-l, --lexer Possible choices: con, py3, bash, dbash, node

Name of lexer to use to parse the file. Choices are: “con” (Python 3 Console),
“py3” (Python 3 Source), “bash” (Bash Console), “dbash” (Bash Console with
a dollar-sign prompt), “node” (JavaScript Node.js Console). If no choice given,
attempts to determine the result automatically. If it cannot detect it, it assumes
Python 3.

Default: “detect”

--version show program’s version number and exit

--num Display line numbers with code starting with the value given here

Default: -1

--background, --bg Change the background colour of the document. When using the –highlight op-
tion, you you should also set a background colour, otherwise the background will
turn white due to how RTF supports colouring. Format of the colour is like an
HTML colour, e.g. #c1b455, without the leading #

--highlight, --hl Highlight certain line numbers when displaying the code. Line numbers are 1-
indexed. Multiple lines can be higlighted using a hyphen for range (e.g. 1-4,
inclusive) or a comma separated list (e.g. 1-4,7,9 is line 1, 2, 3, 4, 7 and 9).

subpurdy Command

Purdy is a library and set of command line tools for displaying code. You can write your own code to display specific
content using the library, or use the subcommands of this program for preset usages. The ‘purdy’ command uses the
Urwid library to display a colourized version of your code in the console, and is a wrapper to the subcommand of the
same name.

usage: subpurdy [-h] [-l {con,py3,bash,dbash,node}] [--version]
{purdy,tokens,print,html,rtf} ... filename

6.1. Contents 15

purdy, Release 1.10.2

Positional Arguments

filename Name of file to parse

Named Arguments

-l, --lexer Possible choices: con, py3, bash, dbash, node

Name of lexer to use to parse the file. Choices are: “con” (Python 3 Console),
“py3” (Python 3 Source), “bash” (Bash Console), “dbash” (Bash Console with
a dollar-sign prompt), “node” (JavaScript Node.js Console). If no choice given,
attempts to determine the result automatically. If it cannot detect it, it assumes
Python 3.

Default: “detect”

--version show program’s version number and exit

subcommands

command Possible choices: purdy, tokens, print, html, rtf

Sub-commands:

purdy

Display code in a interactive console window. Code is written to the screen as if it is being typed

subpurdy purdy [-h] [-c] [-x16] [-d DELAY | -w WPM] [--variance VARIANCE]

Named Arguments

-c, --continuous Instead of prentending to type like a human, just dump the file to the screen

Default: False

-x16 Force 16 colour terminal mode in case 256 is not working to the screen

Default: False

-d, --delay Amount of time between each letter when in typewriter mode. Specified in mil-
liseconds. Defaults to 130ms

-w, --wpm Number of words per minute that the typing speed should look like

--variance To make the typing look more real there is a variance in the delay between
keystrokes. This value, in milliseconds is how much to go over or under the delay
by. Defaults to +/- 30ms

16 Chapter 6. Docs & Source

purdy, Release 1.10.2

tokens

Prints out each line in a file with the corresponding tokens indented beneath it

subpurdy tokens [-h] [--blackandwhite]

Named Arguments

--blackandwhite, --bw By default code lines are highlighted using ANSI colour. This flag turns this
off.

Default: False

print

Prints code to screen using colourized ANSI escape sequences

subpurdy print [-h] [--num NUM] [--highlight HIGHLIGHT]

Named Arguments

--num Display line numbers with code starting with the value given here

Default: -1

--highlight, --hl Highlight certain line numbers when displaying the code. Line numbers are 1-
indexed. Multiple lines can be higlighted using a hyphen for range (e.g. 1-4,
inclusive) or a comma separated list (e.g. 1-4,7,9 is line 1, 2, 3, 4, 7 and 9).

html

Prints code to screen formatted as an HTML div

subpurdy html [-h] [--num NUM] [--highlight HIGHLIGHT] [--full]

Named Arguments

--num Display line numbers with code starting with the value given here

Default: -1

--highlight, --hl Highlight certain line numbers when displaying the code. Line numbers are 1-
indexed. Multiple lines can be higlighted using a hyphen for range (e.g. 1-4,
inclusive) or a comma separated list (e.g. 1-4,7,9 is line 1, 2, 3, 4, 7 and 9).

--full By default only a snippet of HTML is displayed inside a <div>. This flag produces
a full HTML document.

Default: False

6.1. Contents 17

purdy, Release 1.10.2

rtf

Prints code to screen formatted as an RTF document

subpurdy rtf [-h] [--num NUM] [--background BACKGROUND]
[--highlight HIGHLIGHT]

Named Arguments

--num Display line numbers with code starting with the value given here

Default: -1

--background, --bg Change the background colour of the document. When using the –highlight op-
tion, you you should also set a background colour, otherwise the background will
turn white due to how RTF supports colouring. Format of the colour is like an
HTML colour, e.g. #c1b455, without the leading #

--highlight, --hl Highlight certain line numbers when displaying the code. Line numbers are 1-
indexed. Multiple lines can be higlighted using a hyphen for range (e.g. 1-4,
inclusive) or a comma separated list (e.g. 1-4,7,9 is line 1, 2, 3, 4, 7 and 9).

6.1.2 Library Documentation

In addition to the easy to use command-line script, you can also write programs using the purdy library. The purdy
command-line script uses this library to display a simple file to the screen.

Example Program

reads 'my_code.py' and displays it to the screen with line numbers

from purdy.actions import Append
from purdy.content import Code
from purdy.ui import SimpleScreen

Screen is the entry to showing content
screen = SimpleScreen(starting_line_number=1)

Screen has one display area called "code_box", your actions need access
to this to write the code
code_box = screen.code_box

read 'my_code.py' and parse it using the Python 3 lexer
blob = Code('code.py', lexer_name='py3')

actions are like slides in the slides show that is purdy
actions = [

append the contents of the blob to the display code box
Append(code_box, blob),

]

(continues on next page)

18 Chapter 6. Docs & Source

purdy, Release 1.10.2

(continued from previous page)

start the display event loop
screen.run(actions)

Every purdy library program needs to create a Screen or one of its children. The Screen is what controls the display.
Screen and its children provide one or more CodeBox objects which is a widget on the screen that displays code.
You combine a series of purdy.ui.actions to display and alter the code. View more examples in the Sample Code
section.

6.1.3 Library API

UI (purdy.ui.py)

This module is the entry point for the code viewers. It is a lightweight proxy to implementation of a screen. Screen
implementations are found in purdy.iscreen. All programs using the purdy library need to create a Screen object
or one of its children. The factory in this module determines which actual implementation is loaded.

class purdy.ui.CodeBox(starting_line_number=- 1, auto_scroll=True, height=0, compact=False)
Specifies a box to contain code. Screen uses these to determine widget layout, subsequent actions are done
within the context of this box. When CodeBox.build() is called by a Screen class a widget is built and this
box is added to the screen.

Parameters

• starting_line_number – -1 means no line numbers, anything larger will be the first line
number displayed. Defaults to -1

• auto_scroll – When True, purdy.widgets.CodeBox created by this specification auto-
matically scrolls to newly added content. Defaults to True.

• height – Number of lines the row containing this box should be. A value of 0 indicates
automatic spacing. Defaults to 0.

• compact – if False, the dividing line between this box and the next has a 1-line empty bound-
ary. Parameter is ignored if there is no item after this one in the rows=[] listing. Defaults to
False

class purdy.ui.Screen(settings=None, rows=[], max_height=0)
Represents the main UI window for the TUI application. The layout is specified by passing in one or more
CodeBox or TwinCodeBox objects to the constructor. Each box will have a corresponding purdy.widgets.
CodeWidget inside of the UI for displaying code.

Parameters

• settings – a settings dictionary object. Defaults to None which uses the default settings
dictionary: settings.settings

• rows – a list containing one or more CodeBox or TwinCodeBox definitions, to specify the
layout of the screen

• max_height – maximum display height in TUI mode, defaults to 0, meaning no max

Example:

6.1. Contents 19

purdy, Release 1.10.2

from purdy.actions import AppendAll
from purdy.content import Code
from purdy.ui import Screen, CodeBox, TwinCodeBox

screen = Screen(rows=[TwinCodeBox(height=8),
CodeBox(auto_scroll=False)])

c1 = Code(contents_filename='c1.py', starting_line_number=1)
c2 = Code(contents_filename='c2.py')
c3 = Code(contents_filename='c3.py')

actions = [
AppendAll(screen.code_boxes[0], c1),
AppendAll(screen.code_boxes[1], c2),
AppendAll(screen.code_boxes[2], c3),

]

screen.run(actions)

The above would produce a screen with two rows, the first row having two purdy.widgets.CodeWidget objects
side by side, the second having a single one. The top left box would have line numbers turned on, both top boxes
are 8 lines tall, and the bottom box has auto scrolling turned off.

The screen would be divided like this:

Command Line Parameters

Unless “deactivate_args” is set to True in purdy.settings (False by default), Screen will also parse command
line arguments. This allows scripts calling the library to change their behaviour with switches.

Supported switches are:

• –debugsteps Print out the animation steps, grouped by Cell and exit

• –export Print out the results of the actions

• –exportrtf Print out the results of the actions in RTF format

run(actions)
Calls the main display event loop. Does not return until the UI exits.

class purdy.ui.SimpleScreen(settings=None, starting_line_number=- 1, auto_scroll=True, max_height=0)
Convenience implementation of Screen that supports a single CodeBox. The code box is available as
SimpleScreen.code_box.

Parameters

• settings – a settings dictionary object. Defaults to None which uses the default settings
dictionary: settings.settings

• starting_line_number – starting line number for the created code box

• auto_scroll – When True, the class:ui.CodeBox automatically scrolls to newly added con-
tent. Defaults to True.

• max_height – maximum display height in TUI mode, defaults to 0, meaning no max

20 Chapter 6. Docs & Source

purdy, Release 1.10.2

class purdy.ui.SplitScreen(settings=None, top_starting_line_number=- 1, top_auto_scroll=True,
bottom_starting_line_number=- 1, bottom_auto_scroll=True, top_height=0,
compact=False, max_height=0)

Convenience implementation of Screen that supports two CodeBox instances, stacked vertically and separated
by a dividing line. The code boxes are SplitScreen.top and SplitScreen.bottom.

Parameters

• settings – a settings dictionary object. Defaults to None which uses the default settings
dictionary: settings.settings

• top_starting_line_number – starting line number for the top code box

• top_auto_scroll – When True, the top ui.CodeBox automatically scrolls to newly added
content. Defaults to True.

• bottom_starting_line_number – starting line number for the bottom code box

• bottom_auto_scroll – When True, the bottom ui.CodeBox automatically scrolls to
newly added content. Defaults to True.

• top_height – Number of lines the top box should be. A value of 0 indicates top and bottom
should be the same size. Defaults to 0.

• compact – True if for the dividing line between the top and bottom screens is to have no
margin. Defaults to False

• max_height – maximum display height in TUI mode, defaults to 0, meaning no max

class purdy.ui.TwinCodeBox(left_starting_line_number=- 1, left_auto_scroll=True, left_weight=1,
right_starting_line_number=- 1, right_auto_scroll=True, right_weight=1,
height=0, compact=False)

Specifies two side-by-side CodeBoxes. The contained CodeBoxes can be either accessed as twin.left and
twin.right, or twin[0] and twin[1]. When TwinCodeBox.build() is called, the widgets are created and added to
the Screen.code_boxes list sequentially, i.e. a single TwinCodeBox results in two CodeBox items in Screen’s
list.

Parameters

• left_starting_line_number –

• right_starting_line_number – -1 to turn line numbers off, any higher value is the first
number to display. Defaults to -1

• left_auto_scroll –

• right_auto_scroll – True to specify that scrolling happens automatically for the left and
right boxes created by this spec. Defaults to True.

• left_weight –

• right_weight – relative weights for the widths of the columns, if the values are the same
then the columns are the same width, otherwise the widths are formed based on the ratio
of left:right. Example: left_weight=2, right_weight=1 means the left side will be twice the
width of the right side. Both values default to 1.

• height – number of lines for the row this set of boxes is in. The default of 0 specifies
automatic height

• compact – if False, the dividing line between this box and the next has a 1-line empty bound-
ary. Parameter is ignored if there is no item after this one in the rows=[] listing. Defaults to
False

6.1. Contents 21

purdy, Release 1.10.2

Content

Reperesntations of source code are found in this module.

class purdy.content.Code(filename='', text='', lexer_name='detect', purdy_lexer=None)
Represents source code from the user.

Parameters

• filename – name of a file to read for content. If both this and text is given, filename is used
first

• text – a string containing code

• lexer_name – name of lexer to use to tokenize the code, defaults to ‘detect’, attempting
to auto detect the type of content. See purdy.parser.PurdyLexer for a list of available
lexers.

• purdy_lexer – if lexer_name is “custom” this parameter is expected to contain a
purdy.parser.PurdyLexer object.

fold_lines(start, end)
Call this method to replace one or more lines with a vertical elipses, i.e. a fold of the code.

Parameters

• start – line number of the listing to start code folding on. 1-indexed.

• end – line number to fold until, inclusive (1-indexed).

inline_replace(line_no, pos, content)
Replaces the contents of a line starting at pos with the new content

Parameters

• line_no – number of the line to replace, 1-indexed

• pos – position number to start the replacement at, 1-indexed

• content – content to replace with

insert_line(line_no, content)
Inserts the given line into the source, pushing the content down from the given line number

Parameters

• line_no – number of the line to insert at, 1-indexed

• content – content to insert

left_justify()
Removes a consistent amount of leading whitespace from the front of each line so that at least one line is
left-justified.

Warning: will not work with mixed tabs and spaces

python_portion(name)
Treates the source in this object as Python and then finds either the named function, class, or assigned
variable and replaces the source with only the found item.

22 Chapter 6. Docs & Source

purdy, Release 1.10.2

Warning: If the named item is not found your source will be empty!

Parameters name – dot notated name of a function or class. Examples: Foo.bar would find the
bar method of class Foo or an inner function named bar in a function named Foo

remove_double_blanks(trim_whitespace=True)
Removes the second of two blanks in a row. If trim_whitespace is True (default) a line with only whitespace
is considered blank, otherwise it only looks for n

remove_lines(line_no, count=1)
Removes one or more lines from the source listing.

Parameters

• line_no – number of the line to remove, 1-indexed

• count – number of lines to remove, defaults to 1

replace_line(line_no, content)
Replaces the given line with new content

Parameters

• line_no – number of the line to replace, 1-indexed

• content – content to replace it with

subset(start, end)
Returns a new Code object containing just the subset of lines identified in this call

Parameters

• start – line number of the listing to start the subset at. 1-indexed

• end – line number to finish the subset on, inclusive. 1-indexed.

Returns Code object

Actions

Library users specify a series of actions that turn into the presentation animations in the Urwid client. An action is
similar to a slide in a slide show, except it can both present and change lines of code on the screen.

All purdy library programs have the following basic structure:

screen = Screen(...)
actions = [...]
screen.run(actions)

Each action gets translated into a series of steps defined in the purdy.animation module.

class purdy.actions.Append(code_box, code)
Adds the content of a purdy.content.Code object to the end of a purdy.ui.CodeBox.

Parameters

• code_box – the purdy.ui.CodeBox instance to insert code into

• code – a purdy.content.Code object containing the source code to insert.

6.1. Contents 23

purdy, Release 1.10.2

class purdy.actions.Clear(code_box)
Clears the contents of a purdy.ui.CodeBox.

Parameters code_box – the purdy.ui.CodeBox instance where the code is to be replaced

class purdy.actions.Fold(code_box, position, end=- 1)
Folds code by replacing one or more lines with a vertical elipses symbol.

Parameters

• code_box – the purdy.ui.CodeBox instance to modify

• position – line number to begin the fold at. Position is 1-indexed.

• end – line number to finish the folding at, inclusive. A value of -1 can be used to fold to the
end of the box. Defaults to -1.

class purdy.actions.Highlight(code_box, spec, highlight_on)
Cause one or more lines of code to have highlighting turned on or off

Parameters

• code_box – purdy.ui.CodeBox to perform on

• spec – either a string containing comma separated and/or hyphen separated integers (e.g.
“1,3,7-9”) or a list of integers specifying the lines in the code box to highlight. Line numbers
are 1-indexed

• highlight_on – True to turn highligthing on, False to turn it off

class purdy.actions.HighlightChain(code_box, spec_list)
A common pattern with highlighting lines is to turn a highlight on for some set of lines, then turn it off and turn
it on for more lines. This is a convenience wrapper to the Highlight action, turning items on and off in series.

Parameters

• code_box – purdy.ui.CodeBox to perform series of highlight on

• spec_list – a list of highlight specs (see Highlight for details on a spec)

class purdy.actions.Insert(code_box, position, code)
Inserts the content of a purdy.content.Code object to a specified line in a purdy.ui.CodeBox. Pushes
content down, inserting at “1” is the beginning of the list. Position is 1-indexed

Parameters

• code_box – the purdy.ui.CodeBox instance to insert code into

• position – line number to insert code at. Position is 1-indexed. Content is pushed down,
so a value of “1” inserts at the beginning. Negative indicies are supported. A value of “0”
will append the code to the bottom.

• code – a purdy.content.Code object containing the source code to insert.

class purdy.actions.Remove(code_box, position, size)
Removes one or more lines of a purdy.ui.CodeBox.

Parameters

• code_box – the purdy.ui.CodeBox instance where the code is to be replaced

• position – line number to replace the code at. Position is 1-indexed. Negative indicies are
supported.

• size – number of lines to remove.

24 Chapter 6. Docs & Source

purdy, Release 1.10.2

class purdy.actions.Replace(code_box, position, code)
Replaces one or more lines of a purdy.ui.CodeBox using the content of a purdy.content.Code object. This
action attempts to overwrite using the number of lines in the purdy.content.Code object passed in, it is up to
you to make sure there is enough space in your CodeBox.

Parameters

• code_box – the purdy.ui.CodeBox instance where the code is to be replaced

• position – line number to replace the code at. Position is 1-indexed. Negative indicies are
supported.

• code – a purdy.content.Code object containing the source code to insert.

class purdy.actions.RunFunction(fn, undo, *args, **kwargs)
Calls the function passed in, allowing the execution of code during the playing of actions.

Parameters

• fn – function to be called

• undo – function to be called when this Action is undone, can be None

• **kwargs (*args,) – any remaining arguments are passed to the functions when they are
called

class purdy.actions.Section
Marker for the beginning of a section. In the TUI you can skip to the next section marker using “S”.

class purdy.actions.Shell(code_box, cmd)
Runs a shell command via subprocess. Does not display the command (you’re better off using a typewriter
command to show it, then use this to spit out the results). Command and results are added to the purdy.ui.
CodeBox.

Parameters

• code_box – the purdy.ui.CodeBox instance where the code is to be appended

• cmd – string containing the shell command and its paramters. Example: ls -la.

class purdy.actions.Sleep(time)
Causes animations to pause for the given amount of time. Note that this action happens within a cell, so is
considered part of the group of animation steps done together. For example if Append + Sleep + Append is part
of the same cell it is all done/undone together.

Parameters time – Either the amount of time to sleep in seconds (ints and floats supported), or a
tuple containing a pair of times specifying the range of a random value to sleep.

class purdy.actions.StopMovie
Causes the presentation purdy.ui.Screen to exit movie mode

class purdy.actions.Suffix(code_box, position, source)
Adds the provided text to the end of an existing line in a purdy.ui.CodeBox.

Parameters

• code_box – the purdy.ui.CodeBox instance where the code is to be appended

• position – line number to replace the code at. Position is 1-indexed. Negative indicies are
supported.

• source – string containing content to append to the line

6.1. Contents 25

purdy, Release 1.10.2

class purdy.actions.Transition(code_box, code=None, code_box_to_copy=None)
Replaces the contents of a purdy.ui.CodeBox with new content, doing a wipe animation from top to bottom.
Only one of code or code_box_to_copy should be given, both can be blank to transition to an empty screen.

Parameters

• code_box – the purdy.ui.CodeBox instance to perform the transition on

• code – a purdy.content.Code object containing the source code replacing the existing
content. Should not be used at the same time as code_box_to_copy parameter.

• code_box_to_copy – a code box containing rendered code to copy into this one to display.
This is typically a VirtualCodeBox. Should not be used at the same time as code parameter.

class purdy.actions.Wait
Causes the animations to wait for a right arrow key press before continuing.

Typewriter Actions

Typewriter actions display code using a typewriter animation. Code content is displayed a letter at a time as if someone
is typing. The purdy.settings module contains default values for typing speeds and variance time between letters
being pressed.

When the code in question is based on a console, the typewriter will wait for the right arrow to be pressed whenever it
sees a prompt. For example, when appending Python REPL code, the >>> will cause the interface to wait.

class purdy.actions.AppendTypewriter(code_box, code)
Adds the content of a purdy.content.Code object to a purdy.ui.CodeBox using the typewriter animation.

Parameters

• code_box – the purdy.ui.CodeBox instance to append code into

• code – a purdy.content.Code object containing the source code to insert.

class purdy.actions.InsertTypewriter(code_box, position, code)
Inserts the contents of a purdy.content.Code object at the given position using the typewriter animation.

Parameters

• code_box – the purdy.ui.CodeBox instance to append code into

• position – line number to insert the code at. Position is 1-indexed.

• code – a purdy.content.Code object containing the source code to insert.

class purdy.actions.SuffixTypewriter(code_box, position, source)
Adds the provided text to the end of an existing line in a purdy.ui.CodeBox using a typewriter animation.

Parameters

• code_box – the purdy.ui.CodeBox instance to append code into

• position – line number to insert the code at. Position is 1-indexed. Negative indicies are
supported.

• source – a string to be appended to the given line

26 Chapter 6. Docs & Source

purdy, Release 1.10.2

Default Settings

settings.settings

"""
Settings (purdy.settings.py)
============================

Defines the default settings for :class:`purdy.ui.Screen` objects, can be
overridden by passing an altered dictionary into the Screen's constructor.
"""

settings = {
delay between characters appearing on screen (in milliseconds)
'delay':130,

range of random time in milliseconds to change the delay; makes typing
look more natural
'delay_variance':30,

movie mode: instead of waiting for key presses, play like a movie, -1
disables, otherwise value in milliseconds for delay between played steps
(like 'delay' field
'movie_mode':-1,

xterm colour mode, anything but 256 gives 16 colour mode
'colour':256,

if True, stops Screen from running argparse
'deactivate_args':False,

max height for presentation, only works in TUI mode, 0 == no max
'max_height':0,

}

6.1.4 Sample Code

Here are some examples of scripts using purdy as a library. Full source is available in the repository: https://github.
com/cltrudeau/purdy/tree/master/extras/samples

#!/usr/bin/env python

Example purdy library code
#
Displays a colourized Python REPL session to the screen

from purdy.actions import Append
from purdy.content import Code
from purdy.ui import SimpleScreen

screen = SimpleScreen()
blob = Code('../display_code/console.repl')

(continues on next page)

6.1. Contents 27

https://github.com/cltrudeau/purdy/tree/master/extras/samples
https://github.com/cltrudeau/purdy/tree/master/extras/samples

purdy, Release 1.10.2

(continued from previous page)

actions = [
Append(screen.code_box, blob),

]

if __name__ == '__main__':
screen.run(actions)

#!/usr/bin/env python

Example purdy library code
#
Appends the same colourized Python REPL session to the screen multiple
times, waiting for a keypress between each

from purdy.actions import Append, Wait
from purdy.content import Code
from purdy.ui import SimpleScreen

screen = SimpleScreen(starting_line_number=1)
code_box = screen.code_box
blob = Code('../display_code/simple.repl')

actions = [
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),
Append(code_box, blob),
Wait(),

]

if __name__ == '__main__':
screen.run(actions)

#!/usr/bin/env python

Example purdy library code
(continues on next page)

28 Chapter 6. Docs & Source

purdy, Release 1.10.2

(continued from previous page)

#
Uses the typewriter animation to display a bash console session

from purdy.actions import AppendTypewriter
from purdy.content import Code
from purdy.ui import SimpleScreen

screen = SimpleScreen()
code_box = screen.code_box
blob = Code('../display_code/curl.bash')
actions = [

AppendTypewriter(code_box, blob),
]

if __name__ == '__main__':
screen.run(actions)

#!/usr/bin/env python

Example purdy library code
#
Demonstrates the Shell action that runs a subprocess and returns the result

from purdy.actions import Shell, AppendTypewriter
from purdy.content import Code
from purdy.ui import SimpleScreen

screen = SimpleScreen()
code_box = screen.code_box

cmd1 = 'echo "hello there"'
cmd2 = 'echo "it is a nice day today"'

blob = Code(text=f'$ {cmd1}')
blob2 = Code(text=f'$ {cmd2}')

actions = [
AppendTypewriter(code_box, blob),
Shell(code_box, cmd1),
AppendTypewriter(code_box, blob2),
Shell(code_box, cmd2),

]

if __name__ == '__main__':
screen.run(actions)

#!/usr/bin/env python

Example purdy library code
#
Demonstrates the code folding mechanism

(continues on next page)

6.1. Contents 29

purdy, Release 1.10.2

(continued from previous page)

from purdy.actions import Append, Fold, Wait, Clear
from purdy.content import Code
from purdy.ui import SimpleScreen

code = Code('../display_code/code.py')

screen = SimpleScreen(starting_line_number=1)
box = screen.code_box

actions = [
Append(box, code),
Wait(),
Fold(box, 20, 23),
Wait(),
Fold(box, 27),
Wait(),
Clear(box), # test long fold without wait, used to crash
Append(box, code),
Fold(box, 2),

]

if __name__ == '__main__':
screen.run(actions)

#!/usr/bin/env python

Example purdy library code
#
Demonstrates highlighting and unhighlighting lines of code

from purdy.actions import Append, Highlight, Wait
from purdy.content import Code
from purdy.settings import settings
from purdy.ui import SimpleScreen

#settings['colour'] = 16
screen = SimpleScreen(settings, starting_line_number=1)
code_box = screen.code_box
blob = Code('../display_code/console.repl')

actions = [
Append(code_box, blob),
Wait(),
Highlight(code_box, range(5, 41), True),
Wait(),
Highlight(code_box, '5,6,10-20', False),

]

if __name__ == '__main__':
screen.run(actions)

30 Chapter 6. Docs & Source

purdy, Release 1.10.2

#!/usr/bin/env python

Example purdy library code
#
Demonstrates appending strings to the end of existing lines as well as
replacing lines. Both done with and without the typewriter animation.

from purdy.actions import (Append, Wait, Suffix, SuffixTypewriter,
Replace, Remove, InsertTypewriter)

from purdy.content import Code
from purdy.ui import SplitScreen

screen = SplitScreen(top_starting_line_number=10)
top = screen.top
bottom = screen.bottom

source = """\
@decorator
def foo(x):

\"\"\"Multi-line
doc string
\"\"\"
for index in range(1, x):

blah = '''
thing'''

about to print
print(index)

"""
code = Code(text=source)

source = """\
>>> a = 1
>>> b = 2
>>> c = 3
"""
repl = Code(text=source)

actions = [
Append(top, code),
Append(bottom, repl),
Wait(),
Suffix(top, 1, 's'),
Suffix(top, 1, ' # append'),
Suffix(top, 2, ' # append'),
Suffix(top, 3, ' more string now'),
Suffix(top, 5, ' # append'),
Suffix(top, 6, ' # append'),
Suffix(top, 7, ' inside blah mline'),
Suffix(top, 8, ' # append'),
Suffix(top, 9, ' more comment'),
Suffix(top, 10, ' # append'),
Wait(),
SuffixTypewriter(bottom, 2, '9'),

(continues on next page)

6.1. Contents 31

purdy, Release 1.10.2

(continued from previous page)

Wait(),
]

blob1 = Code(text='>>> d = 4')
blob2 = Code(text="""\
>>> e = 5
>>> f = 6
""")

actions.extend([
Replace(bottom, 3, blob1),
Wait(),
SuffixTypewriter(bottom, 1, '56789'),
Wait(),
Suffix(bottom, 1, '333'),
SuffixTypewriter(bottom, 1, '444'),
Wait(),
Remove(bottom, 2, 1),
InsertTypewriter(bottom, 2, blob2),
InsertTypewriter(bottom, 0, blob2),

])

if __name__ == '__main__':
screen.run(actions)

#!/usr/bin/env python

Example purdy library code
#
Demonstrates the slide transition animation

from purdy.actions import Append, Wait, Transition, Fold
from purdy.content import Code
from purdy.ui import SimpleScreen, VirtualCodeBox

screen = SimpleScreen(starting_line_number=10)
code_box = screen.code_box
blob = Code('../display_code/simple.repl')
blob2 = Code('../display_code/traceback.repl')
blob3 = Code('../display_code/decorator.repl')

vbox = VirtualCodeBox(starting_line_number=20, display_mode='urwid')

prep vbox for copy
vbox.perform_actions([

Append(vbox, blob3),
Fold(vbox, 2, 2),

])

actions = [
Append(code_box, blob2),
Wait(),

(continues on next page)

32 Chapter 6. Docs & Source

purdy, Release 1.10.2

(continued from previous page)

Transition(code_box), # test transition to empty
Append(code_box, blob),
Wait(),

Test Wait after Transition and code box copy
Transition(code_box, code_box_to_copy=vbox),
Wait(),
Append(code_box, blob2),

]

if __name__ == '__main__':
screen.run(actions)

6.1.5 Implementation

This is the documentation for the underlying implementing classes. For the most part you don’t need to understand it
if you’re just calling into the purdy library.

Animation Cells

A Cell represents an animation used by the purdy.animation.manager.AnimationManager. A Cell is responsible
for rendering or undoing work to a purdy.widget.CodeBox. Animating cells can partially render then wait for an
alarm provided by the manager to continue rendering.

class purdy.animation.cell.GroupCell
Groups steps together into a bundle that can be rendered or undone together. Implements animation alarms so
the manager can do timed call backs into the group and continue rendering.

purdy.animation.cell.group_steps_into_cells(steps)
Actions create multiple steps possibly with cell breaks between them. This method takes a list of steps and returns
a list of Cell objects, grouping the steps by break marker

Parameters steps – a list of steps

Returns a list of Cell objects

Animation Management

This module handles the slide rendering animation in the urwid purdy player

Animation Steps

An animation is created through a series of steps that are executed together. A cell.GroupCell wraps these steps.
When the user moves forwards and backwards through the animations each cell is rendered or undone. This module

exception purdy.animation.steps.StopMovieException

6.1. Contents 33

purdy, Release 1.10.2

Command Line Tools

Several of the command line tools have common arguments and needs. This file defines helper functions so these are
defined once.

Colour Module (purdy.colour)

Contains classes to convert tokens to colour according to the various supported renderers and palettes.

Parser

This contains methods and classes to manage parsing of code

class purdy.parser.CodePart(token, text)

property text
Alias for field number 1

property token
Alias for field number 0

class purdy.parser.PurdyLexer(name, description, pygments_lexer_cls, is_console, palette)
Container for the built-in supported lexers. This class is where the names of the lexers are defined. Current
choices are:

• ‘con’ – Python 3 Console

• ‘py3’ – Python 3 Source code

• ‘bash’ – interactive Bash session

• ‘dbash’ – interactive Bash session using a dollar sign prompt

• ‘node’ – interactive JavaScript / Node.js session

purdy.parser.parse_source(source, lexer)
Parses blocks of source text, returning a list of CodeLine objects.

purdy.parser.token_ancestor(token, ancestor_list)
Tokens are hierarchical, in some situations you need to translate a token into one from a known list, e.g. turning
a “Token.Literal.Number.Integer” into a “Number”. This method takes a token and a list of approved ancestors
and attempts to make the map. If no ancestor is found then a generic “Token” object is returned

Parameters

• token – token to translate into an approved ancestor

• ancestor_list – list of approved ancestor tokens

purdy.parser.token_is_a(token1, token2)
Returns true if token1 is the same type as or a child type of token2

34 Chapter 6. Docs & Source

purdy, Release 1.10.2

Scribe Module (purdy.scribe.py)

Methods for transforming code into different representations on stdout.

purdy.scribe.print_html(listing, snippet=True)
Prints the code in an HTML representation.

Parameters

• listing – Listing object containing code to print

• snippet – if True, prints out just the <div> containing the code. Otherwise, prints a full
valid HTML file. Defaults to True.

purdy.scribe.print_rtf(listing, background_colour=None)
Prints an RTF document containing the colourized code

Parameters listing – Listing object containing code to print

purdy.scribe.print_tokens(listing, colour=True)
Prints each line in a purdy.content.Code object with a coloured background, then prints the parsed tokens
inside that line

Parameters

• listing – purdy.content.Listing object containing code to print

• colour – set to True to print out using ANSI colour. Defaults to True

TUI Screen (purdy.tui.iscreen.py)

This module is an Urwid code viewer concrete implementation of a Screen. It is constructed by purdy.ui.Screen
depending on its factory.

class purdy.iscreen.tui.iscreen.BaseWindow(iscreen, *args, **kwargs)

keypress(size, key)
Pass the keypress to the widget in focus. Unhandled ‘up’ and ‘down’ keys may cause a focus change.

class purdy.iscreen.tui.iscreen.ConcreteCodeBox(proxy_code_box)
purdy.ui.CodeBox represents a box of code in the purdy.ui.Screen. This is an Urwid implementation of
it.

Parameters proxy_code_box – the purdy.ui.CodeBox representing what is to be built.

class purdy.iscreen.tui.iscreen.ConcreteTwinCodeBox(proxy)
purdy.ui.TwinCodeBox represents two boxes of code in the purdy.ui.Screen, this is an Urwid implemen-
tation of it.

Parameters proxy – the purdy.ui.TwinCodeBox representing what is to be built.

class purdy.iscreen.tui.iscreen.HelpDialog(parent)

keypress(size, key)
Pass the keypress to the widget in focus. Unhandled ‘up’ and ‘down’ keys may cause a focus change.

class purdy.iscreen.tui.iscreen.TUIScreen(parent_screen)
Concrete, Urwid based implementation of a screen.

Parameters parent_screen – purdy.ui.Screen object that is creating this concrete implemen-
tation

6.1. Contents 35

purdy, Release 1.10.2

run()
Calls the main display event loop. Does not return until the UI exits.

Wigets (purdy.wigets.py)

Widgets for displaying. These are called and managed through the Screen classes in purdy.ui.

class purdy.iscreen.tui.widgets.CodeWidget(screen, auto_scroll)
Urwid widget that displays the code. This implements the methods of purdy.content.RenderHook and is
registered against a purdy.ui.CodeBox and purdy.content.Listing. As changes are made to the listing
they will be rendered this widget.

The widget wraps an urwid ListBox, with each line in the box being a line of code. It also provides indiciators
on the right side of the screen as to whether there is content above or below the current screen. If the parent
Screen implementation has multiple instances of this class active, the scroll area will also indicate which code
box is focused.

The up and down arrows as well as the page-up and page-down buttons are supported. If there are multiple code
widgets, tab key will change the focus.

class purdy.iscreen.tui.widgets.DividingLine

class purdy.iscreen.tui.widgets.ScrollingIndicator

class purdy.iscreen.tui.widgets.ScrollingListBox(scroll_indicator, *args, **kwargs)

keypress(size, key)
Move selection through the list elements scrolling when necessary. Keystrokes are first passed to widget in
focus in case that widget can handle them.

Keystrokes handled by this widget are: ‘up’ up one line (or widget) ‘down’ down one line (or widget)
‘page up’ move cursor up one listbox length (or widget) ‘page down’ move cursor down one listbox
length (or widget)

class purdy.iscreen.tui.widgets.TwinContainer(widget_list, dividechars=0, focus_column=None,
min_width=1, box_columns=None)

Virtual Screen (purdy.virtual.iscreen.py)

This module mimics a code viewer, running through the requested actions and making the final result available.

class purdy.iscreen.virtual.iscreen.VirtualScreen(parent_screen)
Concrete, Urwid based implementation of a screen.

Parameters parent_screen – purdy.ui.Screen object that is creating this concrete implemen-
tation

run()
Runs the actions on the code listings.

36 Chapter 6. Docs & Source

purdy, Release 1.10.2

6.2 Indices and tables

• genindex

• modindex

• search

6.2. Indices and tables 37

purdy, Release 1.10.2

38 Chapter 6. Docs & Source

PYTHON MODULE INDEX

p
purdy.actions, 23
purdy.animation.cell, 33
purdy.animation.manager, 33
purdy.animation.steps, 33
purdy.cmd, 33
purdy.colour, 34
purdy.content, 21
purdy.iscreen.tui.iscreen, 35
purdy.iscreen.tui.widgets, 36
purdy.iscreen.virtual.iscreen, 36
purdy.parser, 34
purdy.scribe, 34
purdy.ui, 19

39

purdy, Release 1.10.2

40 Python Module Index

INDEX

A
Append (class in purdy.actions), 23
AppendTypewriter (class in purdy.actions), 26

B
BaseWindow (class in purdy.iscreen.tui.iscreen), 35

C
Clear (class in purdy.actions), 23
Code (class in purdy.content), 22
CodeBox (class in purdy.ui), 19
CodePart (class in purdy.parser), 34
CodeWidget (class in purdy.iscreen.tui.widgets), 36
ConcreteCodeBox (class in purdy.iscreen.tui.iscreen),

35
ConcreteTwinCodeBox (class in

purdy.iscreen.tui.iscreen), 35

D
DividingLine (class in purdy.iscreen.tui.widgets), 36

F
Fold (class in purdy.actions), 24
fold_lines() (purdy.content.Code method), 22

G
group_steps_into_cells() (in module

purdy.animation.cell), 33
GroupCell (class in purdy.animation.cell), 33

H
HelpDialog (class in purdy.iscreen.tui.iscreen), 35
Highlight (class in purdy.actions), 24
HighlightChain (class in purdy.actions), 24

I
inline_replace() (purdy.content.Code method), 22
Insert (class in purdy.actions), 24
insert_line() (purdy.content.Code method), 22
InsertTypewriter (class in purdy.actions), 26

K
keypress() (purdy.iscreen.tui.iscreen.BaseWindow

method), 35
keypress() (purdy.iscreen.tui.iscreen.HelpDialog

method), 35
keypress() (purdy.iscreen.tui.widgets.ScrollingListBox

method), 36

L
left_justify() (purdy.content.Code method), 22

M
module

purdy.actions, 23
purdy.animation.cell, 33
purdy.animation.manager, 33
purdy.animation.steps, 33
purdy.cmd, 33
purdy.colour, 34
purdy.content, 21
purdy.iscreen.tui.iscreen, 35
purdy.iscreen.tui.widgets, 36
purdy.iscreen.virtual.iscreen, 36
purdy.parser, 34
purdy.scribe, 34
purdy.ui, 19

P
parse_source() (in module purdy.parser), 34
print_html() (in module purdy.scribe), 35
print_rtf() (in module purdy.scribe), 35
print_tokens() (in module purdy.scribe), 35
purdy.actions

module, 23
purdy.animation.cell

module, 33
purdy.animation.manager

module, 33
purdy.animation.steps

module, 33
purdy.cmd

module, 33

41

purdy, Release 1.10.2

purdy.colour
module, 34

purdy.content
module, 21

purdy.iscreen.tui.iscreen
module, 35

purdy.iscreen.tui.widgets
module, 36

purdy.iscreen.virtual.iscreen
module, 36

purdy.parser
module, 34

purdy.scribe
module, 34

purdy.ui
module, 19

PurdyLexer (class in purdy.parser), 34
python_portion() (purdy.content.Code method), 22

R
Remove (class in purdy.actions), 24
remove_double_blanks() (purdy.content.Code

method), 23
remove_lines() (purdy.content.Code method), 23
Replace (class in purdy.actions), 24
replace_line() (purdy.content.Code method), 23
run() (purdy.iscreen.tui.iscreen.TUIScreen method), 35
run() (purdy.iscreen.virtual.iscreen.VirtualScreen

method), 36
run() (purdy.ui.Screen method), 20
RunFunction (class in purdy.actions), 25

S
Screen (class in purdy.ui), 19
ScrollingIndicator (class in

purdy.iscreen.tui.widgets), 36
ScrollingListBox (class in purdy.iscreen.tui.widgets),

36
Section (class in purdy.actions), 25
settings (purdy.settings attribute), 27
Shell (class in purdy.actions), 25
SimpleScreen (class in purdy.ui), 20
Sleep (class in purdy.actions), 25
SplitScreen (class in purdy.ui), 20
StopMovie (class in purdy.actions), 25
StopMovieException, 33
subset() (purdy.content.Code method), 23
Suffix (class in purdy.actions), 25
SuffixTypewriter (class in purdy.actions), 26

T
text (purdy.parser.CodePart property), 34
token (purdy.parser.CodePart property), 34

token_ancestor() (in module purdy.parser), 34
token_is_a() (in module purdy.parser), 34
Transition (class in purdy.actions), 25
TUIScreen (class in purdy.iscreen.tui.iscreen), 35
TwinCodeBox (class in purdy.ui), 21
TwinContainer (class in purdy.iscreen.tui.widgets), 36

V
VirtualScreen (class in purdy.iscreen.virtual.iscreen),

36

W
Wait (class in purdy.actions), 26

42 Index

	Purdy Programs
	Purdy TUI Controls
	Purdy Library
	Installation
	Supports
	Docs & Source
	Contents
	Command Line Program Documentation
	purdy Command
	Positional Arguments
	Named Arguments

	pat Command
	Positional Arguments
	Named Arguments

	prat Command
	Positional Arguments
	Named Arguments

	subpurdy Command
	Positional Arguments
	Named Arguments
	subcommands
	Sub-commands:
	purdy
	Named Arguments
	tokens
	Named Arguments
	print
	Named Arguments
	html
	Named Arguments
	rtf
	Named Arguments

	Library Documentation
	Example Program

	Library API
	UI (purdy.ui.py)
	Content
	Actions
	Typewriter Actions
	Default Settings

	Sample Code
	Implementation
	Animation Cells
	Animation Management
	Animation Steps
	Command Line Tools
	Colour Module (purdy.colour)
	Parser
	Scribe Module (purdy.scribe.py)
	TUI Screen (purdy.tui.iscreen.py)
	Wigets (purdy.wigets.py)
	Virtual Screen (purdy.virtual.iscreen.py)

	Indices and tables

	Python Module Index
	Index

